数据的游戏:冰与火

数据的游戏:冰与火

我对数据挖掘和机器学习是新手,从去年7月份在Amazon才开始接触,而且还是因为工作需要被动接触的,以前都没有接触过,做的是需求预测机器学习相关的。后来,到了淘宝后,自己凭兴趣主动地做了几个月的和用户地址相关数据挖掘上的工作,有一些浅薄的心得。下面这篇文章主要是我做为一个新人仅从事数据方面技术不到10个月的一些心得,也许对你有用,也许很傻,不管怎么样,欢迎指教和讨论。

另外,注明一下,这篇文章的标题模仿了一个美剧《权力的游戏:冰与火之歌》。在数据的世界里,我们看到了很多很牛,很强大也很有趣的案例。但是,数据就像一个王座一样,像征着一种权力和征服,但登上去的路途一样令人胆颤。

线程池与工作队列

线程池与工作队列

为什么要用线程池?

诸如 Web 服务器、数据库服务器、文件服务器或邮件服务器之类的许多服务器应用程序都面向处理来自某些远程来源的大量短小的任务。请求以某种方式到达服务器,这种方式可能是通过网络协议(例如 HTTP、FTP 或 POP)、通过 JMS 队列或者可能通过轮询数据库。不管请求如何到达,服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的。

jira工作日志中填写说明

jira工作日志中填写说明

工作日志只能修改剩余估算时间(Remaining Estimate)和花费时间(Time Spent),原估算时间(Original Estimate)不能修改。

剩余估算时间:以为整个时间是估算的,所以就是剩余估算时间;
花费时间:工作真正花费的时间,大于0的整数,不带单位就是分钟;
开始时间(Start Date)主要用于对日志进行排序,方便阅读;